
Love to Code:
Volume 1

Written by Jie Qi
Illustrations by K-Fai Steele

Contents

Prologue

Chapter 1: Light up an LED!

Chapter 2: Code a Blink!

Chapter 3: Add a Switch!

Chapter 4: Fade in and Out!

Debugging

Conclusion

Love to Code: Volume 1 Copyright © 2017 by Jie Qi
Some rights reserved.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License:
https://creativecommons.org/licenses/by-sa/4.0/

Publisher: Sutajio Ko-Usagi Pte Ltd
dba Studio Kosagi, in Singapore
info@chibitronics.com

Illustrator: K-Fai Steele
Editor: Andrew “bunnie” Huang
Technical Editor: Natalie Freed

ISBN: 978-981-11-4688-6

9 789811 146886

P-1Prologue

Prologue

Fern is a really creative frog.

I like to make art
and take photos
and write
and dance
and act
and sing
and play music.

Basically, I like
to create!

P-2

Recently some of Fern’s friends started to make drawings,
paintings and costumes that would light up and were interactive...

Fern wanted to make drawings
that lit up too.

“My friends are making
drawings that do things!”

P-3Prologue

But everything was so complicated!

P-4

Her friend Sami, a seal, noticed that Fern was frustrated.

“Fern, do you want me to show you how to add lights to your
drawings too?”
“Oh ... you don’t have to,” said Fern.
“But I can tell you want to do it. And look, you’ve already started!”
Sami barked cheerfully.

“Well, um,” Fern shuffled. “It’s just hard. There are just so many
things to learn and sometimes it feels like I’ll never get there.”
Sami smiled. “Sometimes it’s hard. Learning any new thing can be
challenging ... but it can be fun too! Let’s give it a try together!”

P-5Prologue

“I’ll be with you the whole time. What do you have to lose?”

Fern brightened at the thought and nodded with determination
at Sami.

P-6

In this book, Fern gets help from not only Sami, but also from her whole
gang of friends. Fern — and you — will learn how to add lights and
sensors to drawings.

Fern promises that if you tag along and complete the activities in this
book, your drawings will also be able to “do” something too!

Fern

Sami

Edith

Carmen

D. Bug

Rusty

P-7Prologue

The stuff in your Love to Code kit is what we’ll use to make our
drawings do something. Let’s take a look at what’s included in the kit!

Chibi Chip and Cable
The Chibi Chip is the programmable brains behind our projects! It
comes assembled with a clip so that we can quickly clip and unclip it to
circuits. We use the special red cable to connect the Chibi Chip to our
programming device — such as a tablet, phone or computer — and a
USB power supply.

Chibi Book
The Chibi Book is a binder that comes with a built-in USB battery pack
capable of powering a Chibi Chip. Note: you will need three AA batteries,
which are not included in the kit.

To turn on the
Chibi Book,
slide the switch
on the top of
the battery
pack to the left.

Power is available
when the power light
is green.

USB battery pack

The batteries are low
when the low battery
light turns red.

P-8

Circuit sticker stencil

We’ll explain how to use all of this stuff in the chapters to come!

Use this stencil to help you
sketch your own circuit designs!

LED stickers Copper tape
We use copper tape to connect
the different parts of our circuit.

These stickers are LED lights!
We’ll use them to make our
projects glow.

Fabric tape patches
These conductive fabric
patches help us fix broken
circuit connections.

P-9Prologue

In this book we will cover how to:

• Turn on LEDs
• Program LEDs to blink
• Make paper switches
• Fade LEDs on and off
• Debug a project:
 We will figure out what’s going
 on when your project isn’t
 working, and fix it!

... and more!

P-10

You can do the chapters in this book on your own, but they are also a
lot of fun to do with a friend!

If you need help or get stuck, check out our web tutorials at:
chibitronics.com/lovetocode

Or send a detailed description of your problem to
help@chibitronics.com. We’ll do our best to respond but please be
patient, we’re a small team of makers, artists, and dreamers — just
like you!

Ready? Let’s go!

1-1Light Up an LED!

Chapter 1:
Light Up an LED!

“Let’s start with the basics,” said Sami the seal to Fern the frog.
“We can turn on a light by connecting it to a Chibi Chip!”

1-2

1. Stick copper tape over
each of these gray lines.

Chibi Chip

Chibi Light
LED sticker

copper
tape

USB power
(Chibi Book, laptop or

wall plug)

2. Stick an LED
sticker over the
triangle footprint.

3. Plug the Chibi Chip into
a power source, so that the
green PWR light comes on.

4. Align and clip the Chibi
Chip to the page over this
rectangle. Make sure the
metal pads of the clip touch
your circuit.

USB cable

We will need:

Turn on a light!

+

-

In this activity we will power up our Chibi Chip and use it to light up an
LED sticker!

5. Bask in the
soft white glow
of the LED!

1-3Light Up an LED!

Oh wait, the LED isn’t on? Try these debugging tips!

Make a strong connection!
Try Pressing hard on the
metal pads of the LED.

Check your Alignment!
Make sure the golden metallic
stripes on the Chibi Chip are
lined up and making solid
contact with the copper tape.

Still not lighting up? Check out the debugging section in the back of this book!

This is D. Bug.
He hangs around
and helps out when
problems show up!

1-4

“You can see the LED’s light through the paper!” exclaimed Sami. “Fern,
let’s draw something around the light.”

What should Fern draw?

1-5Light Up an LED!

How does it work?

The Chibi Chip provides power, which is conducted through copper tape.
A conductor, such as copper, is a material that allows electricity to flow
easily and with little resistance. Conductors can be used to connect different
parts of a circuit. Individual pieces of copper tape within a circuit are called
traces.

We can turn on more lights by
connecting them in parallel,
like in this picture to the right.

Clipping on the Chibi Chip makes a complete circuit! This means that
everything got connected in an unbroken loop that allows power to flow,
turning on the LED light.

LED stickers have two sides: the positive (+) side is the wider, rounder part
of the triangle, and the negative (-) side is the pointy tip. LEDs turn on when
the (+) side is connected to the +3V pin and the (-) side is connected to the
GND pin of a Chibi Chip. Copper tape is used to connect the LED sticker to
the pins of the Chibi Chip.

side

side

1-6

Electricity is a form of energy that flows to turn on your light. This flow of
energy is called a current. Like a ball rolling down a hill, a current will only
flow when there is a difference in height, from high to low.

Down the rabbit hole:
LED Circuits

3 volts
or +3V

0 volts
or GND

GND GND

GND +3V +3V +3V

In electronics, the difference
in height is called a voltage.
Voltage is a measurement of
potential energy, just like the
height of a ball on a hill.

For an LED to turn on, current must flow through
the LED from a higher voltage on the (+) side to a
lower voltage on the (-) side. Here’s what happens
when you connect the (+) and (-) ends of your LED
(represented by Fern and Sami) to different voltages:

ON OFF

OFF OFF

1-7Light Up an LED!

The +3V pin on your Chibi Chip sits at a height of 3 volts. There is another pin
on the opposite side labeled +5V. This means it is at 5 volts. This pin provides
even more voltage than the +3V pin.

Even though they look like three separate pins, they are actually connected
together by copper traces inside the Chibi Chip. This means that they are all
at the same voltage (0 volts) so connecting to one ground pin is the same as
connecting to another ground pin.

ground (GND)

+3V

+5V

A typical LED sticker needs at least 2.5V to shine brightly, so when you
connect it between the +3V pin and GND, there’s more than enough voltage
to turn the light on. The higher the voltage applied across an LED sticker,
the brighter it will shine — up to a point. Be careful, if you give a single LED
sticker too much voltage (more than 6V) it can burn out!

2.5 Volts

0 volts is called ground, and we’ve labeled the pins with GND. This is where
we connect the (-) side of our LED. There are actually three ground pins on a
Chip. Can you find them all?

ground (GND) ground (GND)

0 volts 2.5 volts 5 volts

1-8

To summarize: when we connected the (+) side of the LED sticker to 3 volts
and the (-) side to GND (or 0 volts), we provided enough voltage in the right
direction for the LED to turn on!

Be careful not to connect the +3V pin to GND directly by
crossing traces: this creates a short circuit!

Don’t worry if you accidentally connect the LED backwards. Nothing bad will
happen, it will just not turn on.

Electrons are lazy and will take any shortcut instead of going through your
LED to turn it on, which is why this is called a “short” circuit.

1-9Light Up an LED!

In fact, short circuits are so appealing for electrons, they will stop
flowing through the Chibi Chip and instead rush to flow through the
short circuit. If there is a short circuit between power and ground, the
Chibi Chip will stop working and it will drain a lot of power.

If this happens to a Chibi Chip, the Chip will shine a red warning light
until the short circuit is disconnected.

If too much power flows through the short circuit during this burst, the
circuit will get very warm, and the circuit might become permanently
damaged if it gets too hot. So if you notice a short circuit, make sure to
disconnect the Chibi Chip right away!

1-10

How can we turn on a
bunch of lights?

Parallel Circuits
Parallel circuits are where each LED shares a trace
between +3V and GND. To connect LEDs in parallel,
stick the LEDs next to each other between a (+) and a
(-) track, like rungs on a ladder. You can turn the circuit
on page 1-2 into a parallel circuit by just adding LEDs!

As the illustration above shows, all of the (+)’s go to the +3V pin, and all of
the (-)’s connect to ground. This way the power source provides enough
voltage (“height”) for each LED. Since each LED needs at least 2.5V,
connecting them in parallel to the +3V pin will turn all the LEDs on.

Here are a couple of ideas:

1-11Light Up an LED!

Series Circuits
Series circuits are where LEDs are connected back to back, like beads in a
chain. The (+) of one LED goes to the (-) point of the next.

You’ll see that the more LEDs there are between the +5V and GND, the
dimmer the lights are, until they don’t turn on at all!

Since the LEDs are in a line, the required voltage also adds up so we’ll
need a higher voltage power source. For example, since each LED sticker
requires 2.5V to shine brightly, to turn on 3 LEDs in series we will want a
7.5V power supply. They may still glow with less voltage, but not as bright.

If you want to try out a series circuit, connect 3 LED stickers in series like
this:

Then, clip a wire such as an alligator
clip to the +5V pad of the Chibi Chip and
connect the other end to the (+) side of
different stickers in the series chain.

First, make a circuit with copper
tape going the GND pin. Leave
gaps for LEDs and stick LEDs so
that they all point toward GND.

1-12

Let’s Play!

To cross copper tape without
causing a short circuit, you can
put a small piece of paper in
between the traces to keep them
separated.

The paper is an insulator,
which is a type of material that
electricity can’t flow through.

It’s now time to design your own scene! Before we get started, here
are some tips and tricks on how to use copper tape.

Patches are
also handy for
making your
circuit branch
out or extend!
Just tape a
conductive fabric
patch over two
copper tapes to
connect them.

If an LED is flickering, the
connection can be improved by
sticking a fabric patch over the
LED and copper tape!

To turn copper tape around corners, try this folding trick:

First, fold the tape
back, so the sticky
side faces up.

Then, flip and
turn the tape.

Finally, flatten
the corner.

Conductive fabric patches are like
bandages for circuits. Accidentally torn
copper tape can be rejoined by just sticking
a conductive fabric patch over the broken
connection!

1-13Light Up an LED!

Use conductive fabric patches to connect across creases or
multiple sheets of paper! Unlike copper tape, fabric patches can
be folded over and over again.

Copper tape will eventually crack if creased or folded
too many times!

LED Stickers won’t work as well if the underlying
copper tape is dirty or wrinkled!

Hands should be free of oil and dirt before crafting with copper
tape. Also, before applying LED stickers, wrinkled copper tape
can be smoothed out by rubbing over it with the barrel of a pen
or pencil!

1-14

Look on the facing page! It’s a magical flower pot! What’s growing? What’s
glowing?

Draw your own creature on page 1-15 and then design a circuit on page 1-17
to light it up!

Remember to watch
out for short
circuits! Yay! Nope. Yay!

1-15Light Up an LED!

1-16

1-17Light Up an LED!

Start your circuit
here, so you can clip
on a Chibi Chip after
you’re finished!

Design your own circuit on this page!

1-18

“Yay! This feels like magic!” Fern exclaimed.

Fern’s friend Carmen the bird walked past and admired the new creation.
“Adding light to your art really does make it look magical,” she chirped.

Carmen, a clever programmer, thinks for a moment and asks, “Hey, do you
want me to show you both how to make those lights blink?”

2-1Code a Blink!

“Wow, if those lights could blink, then my drawings would really
come alive!” said Fern enthusiastically. “Can I really do that?”

“We can control lights by writing programs, through a process
called coding,” said Carmen the bird. “Let’s get started!”

Chapter 2:
Code a Blink!

2-2

We will need:

Let’s get Coding!

Chibi Chip,
mounted in a Clip

Programming
and power cable

A device with a web
browser (phone,
computer, or tablet):
this is the programming
device

1. Make sure we’ve got an Internet connection. Open a web browser
and go to: ltc.chibitronics.com
This brings us to the Love to Code (LTC) text programming editor. This
is where we type the code that will be sent to the Chibi Chip.

Internet
connection

In this activity we will upload a program to the Chibi Chip to make a
light blink. The code starts as text in your browser, which then gets
translated by a compiler and finally converted into a song that we play
to the Chibi Chip. When the Chibi Chip hears the song, it decodes the
song back into instructions on how to turn your LED light on and off.

USB power
(Chibi Book, laptop or

wall plug)

2-3Code a Blink!

The LTC code editor has a basic layout like this:

The Upload button
sends code to our
Chibi Chip.

Examples has
code samples
to help us get
started!

Use Save and Load
to stash code in the
programming device, or
download to your device
for safekeeping & sharing.

This area is where
we can type and edit
code!

A sound banner will appear across the bottom of
the screen when our code is uploading.

3. Plug the small end of the programming and power cable into the
Chibi Chip. Then plug the big end into a USB power supply, such as
a computer, wall power or the Chibi Book’s built-in battery pack.

2. We start by opening Examples > Love to Code Vol 1 > Basic Blink

4. Plug the audio end of the programming and power cable into the
audio jack of your programming device.

and or

or

2-4

5. Press and hold the program button on the Chibi Chip until the PROG
light stays red. This lets the Chibi Chip know to listen for new code. Let
go of the button after the light turns red.

6. Click Upload on the browser to upload the code and program the
Chibi Chip.

A sound waveform should appear at the bottom of the page. Its
presence means the code is currently being played to the Chibi Chip. If
this bar does not appear, try refreshing the page and uploading again.

Program
Button

PROG light changes to

4. Turn the volume up to the max on the programming device and
make sure it’s not muted. Since code is uploaded to the Chibi Chip
through the audio cable, we need to turn the volume up to 100% so the
Chibi Chip can hear the code loud and clear!

2-5Code a Blink!

Did the upload sound
waveform animation
appear? If not, try
refreshing the page and
clicking upload again.

How did it go? Did the light blink? If not, Try checking the following:

7. When the sound bar is done flashing, the red PROG light should
turn back to green. This means the code is done uploading. If
everything worked, the LED over pin 0 should now be blinking!

Check out the
debugging section
at the back of this
book for more tips!

Did the PROG light turn
steady red before
programming? If not
press and hold the PROG
button until it turns red
and try uploading again.

The original code that came with
the Chibi Chip can be restored by
uploading the example at:

 Examples > Effects >
 Default Code - Light Cascade

The uploaded code is saved to the Chibi Chip, and it will automatically
reload itself and run whenever the Chibi Chip is powered on. This
means once the Chibi Chip has been programmed, it no longer needs
to be connected to a programming device.

2-6

Decode the Code
How does the Chibi Chip blink the LED? It’s actually following a set
of instructions generated from our code! Let’s take a look:

The comments describe what the code does. The Chibi Chip will
ignore any notes that we leave in the code after a // (double slash).
Adding comments is a good way to record and remember things.

The main code is split into two parts called functions: the “setup”
and the “loop” functions. We label the functions first, using void
setup() and void loop(), and then we put the function’s code
inside squiggly brackets { and }, after each label. The coded
statements inside each function are step-by-step instructions for a
Chibi Chip. Each statement must end with a “;” semicolon.

The setup function happens
once at the beginning, when
you first turn on the chip.

The loop happens over and
over after setup is done.

void setup() {
 // code here is used to setup the Chibi Chip
 // it’s run only once at the beginning
}

void loop() {
 // code here is the loop or ‘body’
 // and gets run over and over
}

//Love to Code
//Volume 1: Basic Blink

void setup() {
 outputMode(0);
}

void loop() {
 on(0);
 pause(1000);
 off(0);
 pause(1000);
}

The comments are notes to
us about what the code does.

2-7Code a Blink!

The complete set of coded
instructions is called a program.
The Chibi Chip expects every
program to have at least the
setup() and loop() functions.
If either is missing, the Chibi
Chip won’t know how to run the
program!

In other words, when first turned on, the Chibi Chip runs through the
setup() function once. Then it will run the instructions coded in the
loop() function over and over, until powered off or reset. The next
time it turns on, the Chibi Chip will start with setup() again.

The program runs like a train on a track. First it leaves the station,
which is the setup(), and then runs around and around on the
track, which is your loop().

2-8

In the loop function we have three different kinds of instructions:
on(), pause(), and off(). These three kinds of instructions allow
us to blink a light by turning it on, pausing, then turning it off and
pausing again.

The numbers (0 through 5) on the bottom of a Chibi Chip label the
pins. Our code statements can control these pins.

For example, on() turns a pin on, and off() turns a pin off. The
number inside the () parenthesis is called an argument, and
specifies which pin to turn on or off. So, in our blink example, on(0)
turns on pin 0 and off(0) turns off pin 0. The indicator LED above
pin 0 also turns on and off, helping us confirm that the Chibi Chip
understood our code statements.

pause() tells the Chibi Chip to wait and not do anything. The number
inside the () parenthesis tells how long to wait in milliseconds. In
our blink code, pause(1000) instructs the Chibi Chip to wait 1000
milliseconds, or 1 second.

on(0)

Pin 0 ON Pin 0 OFF

off(0)

The Chibi Chip goes so quickly from one instruction to the next that
if we don’t tell it to pause, everything blurs together! The smaller the
delay, the faster things will go.

Remember:
there are 1000
milliseconds in
1 second!

2-9Code a Blink!

void loop() {
 on(0);

 pause(1000);

 off(0);

 pause(1000);
}

1. Turn ON pin 0

2. Wait 1000
 milliseconds

3. Turn OFF pin 0

4. Wait 1000
 milliseconds

After going through all four steps one-by-one, the Chibi Chip will
go back to step 1 and repeat. And this is what makes the LED light
blink!

Looking at the loop function again, this is what’s happening:

2-10

Upload this new code to the Chibi Chip using the procedure
starting at step 5 on page 2-4 and see what happens.

Play with The Code

Let’s try writing our own code! Start by changing the pause times:

Change this number to 500
in both pauses

The light over pin 0 should now be flashing faster! Try some other
numbers for the pause between on and off statements. Can you
make it blink super slow?

void loop() {
 on(0);
 pause(1000);
 off(0);
 pause(1000);
}

Remember to press the
PROG button on your Chibi
CHip before clicking the
Upload button, so it knows
to listen for code!

2-11Code a Blink!

We can also create more complex patterns by adding more
on() and off() statements too. For example, try this:

void loop() {
 on(0);
 pause(1000);
 off(0);
 pause(500);
 on(0);
 pause(500);
 off(0);
 pause(500);
 on(0);
 pause(500);
 off(0);
 pause(1000);
}

This makes a long-short-short blink pattern. Try making your own
rhythms! How about a heartbeat?

The Chibi Chip’s compiler is super picky about
punctuation:

1) it is case-sensitive (so “On” is not the same as “on”)

2) don’t forget the semicolons (;) at the end of each
statement.

Write the code exactly as seen above, Otherwise
the Chibi Chip wont understand our code and it wont
upload!

2-12

+ -

Program this circuit

1. Stick copper tape on the
gray lines. Remember to
fold the tape at the turns!

See how when you connect the LED
circuit to pin 0, the LED also blinks
just like the indicator light on the
Chibi Chip? That’s because the pin
sends power to both the light on
the Chip as well as to any LEDs in a
circuit connected to that pin.

3. Clip on a
 Chibi Chip.

2. Stick down a LED.

Try clipping GND and pin 0 to
the “Turn on a Light” circuit on
page 1-2, and see that blink
too!

We can use a program to control a circuit of our own design. Try
it with this template!

Remember to fold your tape
and not cut or tear at the turns.
Check out the facing page for a
tape folding trick to make neat
turns!

2-13Code a Blink!

Remember to save your code
as you go!

DRAW HERE!

To turn copper tape around corners without tearing, try this folding
trick:

1. Fold tape back,
so the sticky side
faces up

2. Flip and
turn your
tape

3. Flatten
the corner!

If the tape tears,
don’t worry! Fix it
with a conductive
fabric patch!

2-14

Draw something on page 2-13, to see the shadow of your drawing
appear when the light blinks on!

2-15Code a Blink!

Decode the code

Now we’re ready to program more pins! To do that we have to start
with our setup code.

Recall that the setup code runs exactly one time after being powered
on to make sure the Chibi Chip has everything it needs before trying
to run our program. It’s a bit like gathering up ingredients before
cooking. That’s why it’s called “setup.”

Let’s take a closer look at the setup() in our blink example:

outputMode() sets up the pin to be in OUTPUT mode, which means
it will turn things on and off, like a LED light or a motor. The
number inside the “()” parenthesis is an argument that tells the
Chibi Chip which pin to set.

In our example, outputMode(0) sets pin 0 to be an OUTPUT so that
pin 0 can turn things like our LEDs on and off.

A pin can also be an INPUT, which is something that takes in
information from the circuit, like a switch or sensor. We will learn
more about inputs in the next chapter!

void setup() {
 outputMode(0);
}

2-16

Play with THE Code

void setup() {
 outputMode(0);
 outputMode(3);
}

Now, add more on() and off() statements to the loop to make our
new pin do stuff, using “3” as the argument inside the parenthesis:

void loop() {
 on(0);
 pause(1000);
 off(0);
 pause(1000);
 on(3);
 pause(1000);
 off(3);
 pause(1000);
}

Upload this new code and you will see pin 0 and pin 3 both blinking
on and off! To make the lights blink together, try this code:

Ready to add more pins to our program? Let’s try to make pin 3
blink! First, let’s add one more outputMode() statement to the
setup, so the Chip knows how to configure pin 3 before we use it:

Even though pin 3 and pin 0 are controlled with statements on
different lines, the Chibi Chip goes from one step to the next so fast
that they seem to happen at the same time! Try adding or modifying
pause() statements to make your own patterns.

void loop() {
 on(0);
 on(3);
 pause(1000);
 off(0);
 off(3);
 pause(1000);
}

2-17Code a Blink!

It’s starting to get dark in Fern, Sami, and Carmen’s town, so everyone
is heading home for the evening.

2-18

Draw what everyone in the apartment building is doing when they
come home. Their shadows will show up in the windows when the
LED stickers on the facing page turn on!

2-19Code a Blink!

Can you get all 6 of the pins to blink
in a pattern? If you get stuck while
coding, check out the Six Pin Blink in the
Examples menu to help you get started!

Program this circuit
Just like before, we can clip the Chibi Chip to a circuit and control
the lights using a program. Here’s a circuit where all of the pins are
connected to LEDs, and the LEDs are placed in spots that will light up
the windows on the page 2-17. Now we’re ready to play with all the pins!

-
+

-
+

- +

- +

- +

- +
-

+

2-20

Down the rabbit hole:
Microcontrollers

So how does a program actually make lights blink? There’s a little
black diamond on the Chibi Chip called a microcontroller: this is a
tiny computer.

Unlike the +3V and GND pads, which are permanently wired to +3V
and GND, all the numbered pins can be programmed by statements
in our code to connect to +3V, GND, or neither. All of this happens
inside the tiny microcontroller!

on(0);

The microcontroller runs instructions coded by your program. Some of
these instructions change how the pins behave.

off(0);

2-21Code a Blink!

When we connect an LED to the Chibi Chip, we connect the (-) side to
GND, and the (+) side to a pin (in this example, pin 0). Our code can
configure the (+) side of the sticker to be either +3V or GND by using
statements that reference pin 0.

There’s an indicator light built into the Chibi Chip for each numbered
pin.

These indicator lights let us know what a program is doing without
having to first build a circuit. They’re really handy for testing programs
and debugging circuits.

Pin 0 is OFF Pin 0 is ON

When pin 0 is ON, it’s
connected to +3V by the
microcontroller. The LED
turns on because the (+)
end is connected to +3V
through pin 0, and there is a
voltage difference, allowing
current to flow.

When pin 0 is OFF, it’s
connected to GND by
the microcontroller. The
LED turns off because
both the (+) and (-) ends
are connected to GND,
and there is no voltage
difference.

+3V GND GNDGND

on(0); off(0);

2-22

Let’s play!

Above is a Chibi Clip template to help you get started. Use as many
pins, and whatever circuit shape you like! If you’re not sure how to
start, take a look back at the circuit on page 2-19 for reference.

Remember: LEDs that are connected to the same pin will come on at
the same time. Since the Chibi Chip has 6 programmable pins, you
can control up to 6 separate groups of lights with one Chibi Chip!

Now it’s your turn to design your own circuit and light up the night sky
(turn to page 2-24 for a preview).

2-23Code a Blink!

One method for designing a circuit is to:

1. Draw dots where
you want the lights
to go.

2. Lay copper tape
going from GND to
each of these dots.

3. Tape copper traces
from the programmable
pins to the dots, and
add your LED stickers!

2-24

Edith the beaver overheard her three friends enjoying the light show
and looked out her window.

“How am I missing out on this party?” cried Edith, and she quickly
rushed out to join the fun.

3-1Add a Switch!

“I love building things! I can build switches out of paper and
copper tape,” Edith the beaver quipped. “If we add a switch to
our circuit, then we can interact with the lights!”
Thwacking her tail enthusiastically, as if smacking a giant
switch, Edith continued,“When someone presses the switch, we
can make something happen, like blinking the lights.”
“Amazing!” exclaimed Fern. “Show us how!”

Chapter 3:
Add a Switch!

3-2

We will need:

Chibi Chip cable

1. Turn the page and make the switch circuit template on page 3-4.

USB Power

Internet connection copper tape Chibi Light
LED Sticker

Program a switch
In this activity we’ll add interactivity to our projects by using a switch to
turn on a light. We can create different types of switches out of paper
and use our switch to trigger light patterns.

2. Upload the Basic Switch example code to the Chibi Chip. Go to
Examples > Love to Code Vol 1 > Basic Switch

scissors

Web browser
(phone, computer, or
tablet): this is your
programming device

3-3Add a Switch!

Switch not working?
First, check if the code was uploaded to the chip:

3. The flap at the bottom of page 3-4 is the switch. Press it and
see the LEDs on pin 0 and pin 5 turn on.

Check for tears.
Patch Tears with
Conductive fabric
tape.

Is the LED over pin 0
turning on, but not the
LED in your circuit?
press hard on the LED
sticker’s Metal pads for
a stronger connection.

Make sure the
volume is all the
way up.

If the code looks good, let’s try checking our circuit:

Still not working? Check out the debugging section in the back
of this book.

Did the upload sound
waveform animation
appear? If not, try
refreshing the page and
clicking upload again.

Did the PROG light turn
steady red before
programming? If not,
press and hold the PROG
button until it turns red
and try uploading again.

Check your Alignment.
Make sure the golden
metallic stripes on the
Chibi Chip are lined up and
making solid contact
with the copper tape.

3-4

3. Clip the
 Chibi Chip.

5. Cut along the two
solid red lines
and fold the flap
over to make the
pushbutton.

+

-

Pushbutton Switch Template

4. Cover this
gray patch
with copper
tape.

2. Add LED.

1. Stick copper tape
 over the gray lines.

Remember
to fold at the
turns!

3-5Add a Switch!

Almost done!

3-6

What happens when you
press on Edith’s tail?

3-7Add a Switch!

Decode the Code
Let’s take a look at how the switch example program works. Here’s
our code:

// Love to Code
// Volume 1: Basic Switch

int pressed = 0;

void setup() {
 outputMode(0);
 inputMode(5);
}

 void loop() {
 pressed = read(5);

 if(pressed == 1) {
 on(0);
 } else {
 off(0);
 }
}

Make a variable named pressed to
store whether the switch is on or off.

Set pin 0 to output mode for
turning on the LED.
Set pin 5 to input mode for
reading the switch.

Read from the input pin (pin 5) to
see if the switch is pressed.

Turn on or off the light depending
on whether the switch is pressed.

“Don’t worry, I’ll explain this all,” said Edith.

3-8

We start by creating a variable which is a text name that stores a
number. This comes in handy for storing our switch status so we can
use it for controlling our pins later. We create variables like this:

int pressed = 0;

We named our variable pressed because it tells us whether the
switch is pressed or not, but we can name a variable any single
word that helps us remember what it’s for!

This is the name of
our variable

This is the initial value we
set our variable to

The cool thing about variables is that we can update the stored
number. We do this by setting it to another value with the = equal
sign. For example, pressed = 1 changes pressed to equal 1
instead of 0. We use this technique to update our pressed variable
based on if the button is pressed or not.

We set pressed equal to 0 at the beginning as a default, or initial,
value. As long as we don’t change pressed from 0, every time we
write pressed in the code, it is the same as writing the number 0.

The int right before our variable stands for integer. On a Chibi Chip,
it means that the variable can be set to a whole number, like -42 or
18000, but not to a decimal like 3.14. The whole number must be no
less than -2147483648 and no greater than 2147483647, and typed
without commas.

3-9Add a Switch!

In our loop() we start by inspecting the voltage on pin 5 (the one
connected to our switch) using the read() function, and storing the
result in pressed:

pressed = read(5);

variable that we save
our voltage reading to

pin that we are
reading from

read() gives a 1 if the switch is pressed and a 0 if the switch is not
pressed. Because our circuit has a switch connected to pin 5, we use
read(5) to specify which pin to check.

sets the value

pin 5 connected to +3V >
read(5) is 1 >
pressed = 1

pin 5 not connected to anything >
read(5) is 0 >
pressed = 0

3-10

We program our lights to turn on or off depending on the switch’s
value. We do this using an if() statement. Here is the general
structure of the if() statement:

An if() statement allows us to change the behavior of the circuit
based on the answer to a question. This question is called a
condition.
If the condition is TRUE, then the Option 1 code between the first
set of curly braces {} runs. If the condition is not true, or FALSE,
then the Option 2 code between the second set of curly braces {}
runs.
It’s like train tracks that split into two paths, and which path the
train takes depends on whether the condition is true or false.

if(condition) {
 // Option 1 code: runs when
 // condition is TRUE
 } else {
 // Option 2 code: runs when
 // condition is FALSE
 }

3-11Add a Switch!

 if(pressed == 1){
 on(0);
 } else {
 off(0);
 }

Condition statement: is pressed equal to 1?

If yes, do this: turn ON pin 0

Otherwise, do this: turn OFF pin 0

In our code we ask “is it true that pressed is 1?” using the condition
statement pressed == 1.

Condition statements are written as comparisons. The == double
equal sign asks, “Are the left and right sides are equal?”

Use a = single equal sign
to assign a new value to a variable.

Use a == double equal sign
when making a comparison.

WATCH OUT!

3-12

To summarize: if our switch is pressed, then pressed is 1, our
condition is TRUE and we turn ON pin 0. If our switch is not pressed,
then pressed is 0, our condition is FALSE, and we turn OFF pin 0.

Switch is pressed >
pressed = 1 >
condition is TRUE >
turn ON pin 0

Switch is not pressed >
pressed = 0 >
condition is FALSE >
turn OFF pin 0

3-13Add a Switch!

 on(0); and off(0);
 trade places

pressed = read(5);

if(pressed == 1) {
 off(0);
 } else {
 on(0);
 }

Play with Code
Whew, we’ve covered a lot! Let’s try it out and play with some code! We
can program the light to do other things when the switch is pressed. All
we have to do is change what’s inside the if() statement. Let’s start by
changing the code in the loop() function:

pressed = read(5);

if(pressed == 1) {
 // code here runs when switch is pressed
 } else {
 // code here runs when switch is NOT pressed
 }

Upload this new code to a Chibi Chip and clip it to the example switch
circuit on page 3-4. Notice that pin 0 is on now, and when we press the
button, pin 0 turns off!

We can make the pushbutton activate any light sequence by just putting
the code for the sequence between the { and } braces:

Note that the else {} statement is optional. The contents inside {}
can be left blank, or the entire else {} clause can be deleted if it’s not
needed.

3-14

For example, try putting this blink sequence inside the if() statement
and see what happens!

pressed = read(5);

if(pressed == 1) {
 on(0);
 pause(500);
 off(0);
 pause(500);
 on(0);
 pause(500);
 off(0);
 pause(500);
 } else {
 on(0);
 }

Voilà! We’ve made a trigger button! Now every time we press the
button, it triggers the blink animation inside the if() statement. Try
programming your own patterns for the trigger button!

3-15Add a Switch!

At this point our code is getting pretty complex. It may even be confusing
to remember what we mean. Time to clean up our code and make it more
readable with comments and variables!

Code Cleanup

Comments are human-readable text that explain what the code does
without affecting how the code runs. Like labels or sticky notes, their
purpose is to make the code much easier for us and our friends to read! Go
to your programming device and add some comments to our code:

/* This code turns on a light connected
 to pin 0 when a switch on pin 5
 is pressed.
 */

// make a variable for remembering switch values
int pressed = 0;

void setup(){
 outputMode(0); // make pin 0 output
 inputMode(5); // make pin 5 input
}

Anything after a // double slash on the same line becomes a comment
and changes to brown. If we need to leave a long comment that takes
up multiple lines, we can save time by putting the entire comment text
between /* and */ .

3-16

Another useful tool for cleaning up code is variables. So far we’ve used
variables to save information from our switches. However, variables are
useful for replacing numbers with more informative text names. Using
variables instead of values help make code easier to understand and
maintain:

Comments are also handy for keeping code snippets in a program
that aren’t actually run. This is useful when we’re testing out different
options and don’t want to delete the original code. Just put the unneeded
code between the /* and */, like a regular comment. This is called
commenting out code:

 if(pressed == 1) {
 on(0);
 pause(500);
 off(0);
 pause(500);
 } else {
 off(0);
 }

 if(pressed == 1) {
 on(0);
 /* pause(500);
 off(0);
 pause(500);
 */
 } else {
 off(0);
 }

int starLED = 3;
int flowerLED = 4;

void setup(){
 outputMode(starLED);
 outputMode(flowerLED);
}

void setup(){
 outputMode(3);
 outputMode(4);
}

Before:
What is connected to
these pins? Nobody
knows!

After:
When the LED pins are
named as variables,
everyone knows what the
pins are for!

Before:
Original code makes
the light blink when the
switch is pressed.

After:
New code comments out
blink code, so the light stays
on when the switch pressed.

3-17Add a Switch!

Using variables as labels also lets us quickly change a value in
multiple places with a single edit. For example, it lets us change many
pin numbers at once by editing just one line of code, instead of having
to find and change every line that uses that pin number.

int myLED = 2;

void setup(){
 outputMode(myLED);
}

void loop(){
 on(myLED);
 pause(1000);
 off(myLED);
 pause(500);
 on(myLED);
 pause(1000);
 off(myLED);
 pause(200);
}

In the left-hand code, we’ve highlighted all the places we’d have
to update if we changed the connection of the LED from pin 2 to
something else. By using the myLED variable in the right-hand code,
we can update the pin with a single edit to our code. Where else could
we have used a variable?

void setup(){
 outputMode(2);
}

void loop(){
 on(2);
 pause(1000);
 off(2);
 pause(500);
 on(2);
 pause(1000);
 off(2);
 pause(200);
}

Before:
Change every line that
uses pin 2

After:
Change only once at the variable
declaration of myLED.

These tips will help make your code more readable and easier to
debug. We will begin to use more variables and comments in our
example code too, so watch out for them!

3-18

PaperCraft switches
Now that we’ve cleaned up our code, it’s time to get messy with craft
materials! In the next several pages, we’ll go through step-by-step
instructions on how to build a few types of papercraft switches. But
before we dig in, here is a brief introduction to the ideas we’ll cover.

Paper Clip Switch Holder
Use a paper clip to hold down a switch
that’s been built at the edge of a page.
The switch will stay on even when it’s
not being pressed! The switch circuit
we built on page 3-4 is perfect for use
with a paper clip.

Press-the-Flap Switch
Use a flap of paper with copper tape
on it to close a circuit anywhere.
This way, we can make switches
anywhere on the page, not just on
the edge or corner of the paper!
To make sure the switch doesn’t
accidentally press itself and turn on,
insert a bit of paper or foam tape as
a spacer between the flap and the
circuit.
We can also use fun shapes for the
flap, like some of the ones below!

flap down

flap up

3-19Add a Switch!

Wind-Sensing Switch
Make a flap switch that has a thin
stem, like a leaf shape, to make a
wind-sensing switch!
This shape will catch the wind,
like a sail, and the stem makes it
flexible enough to press down and
close the circuit when blown on.

Pop-Up Switches
Circuits and switches don’t
have to be flat! We can put
copper tape at the end of a
long strip of paper, and curl
or fold it so that it zigzags
and pops off the page.
These flexible switches can
stretch to close different
circuits or they can be
clipped in place.

3-20

Pocket Character Switch
This switch comes in two parts: a character and a pocket. The
character is a loose piece of paper that has copper tape pasted
on a flap that’s been rolled around to the back side. To hold the
character, we place a pocket over the switch gap in our circuit.

A character can work as an ON/OFF switch too! Just flip the
character over so that the copper tape faces away from the circuit.
That way, the switch is off even when the character is in the pocket!

When the character is placed inside
the pocket, the copper tape on the
character closes the switch gap and
completes the circuit!

Front Back

3-21Add a Switch!

switch Craft Gallery

All of the circuits use the Basic Switch example code so make sure
that’s loaded onto the Chibi Chip before starting. Then, complete the
circuit template in each frame and follow the craft directions for the
cutouts.

The next few pages are a gallery of switches for us to craft! The
artworks in this gallery are all incomplete and need our help to
come to life. Once we’re done, you can refer back to these pages for
inspiration in your own projects!

You’ll need:

Chibi Chip cable

USB Power

copper tape

Chibi Light
LED stickers

scissors

non-conductive tape

3-22 Pop-Up Switch

What glows when the pointer reaches the switch? Craft the switch by
following the instructions on page 3-23!

C

+

-

3-23Add a Switch!

Make a Pop-Up Switch

1. Cut out the pointer, using
the red outline on the back
side of this page.

2. Add copper tape over the
gray line.

4. Tape the flap marked C
over the footprint marked C
on page 3-22.

3. Fold along the dotted lines
so that the pointer becomes
a zig zag.

3-24

C

Here’s what the finished
pop-up switch looks like!
Stretch the pointer finger so
reaches the switch contacts,
and then press to activate
the switch.
When we let go, the pointer
springs back up!

3-25Add a Switch!

Make a Press-the-Flap Switch

1. Cut out the boot, using the
red outline on the back side
of this page.

2. Add copper tape over the
gray line.

4. Tape the flap marked B over
the footprint marked B on page
3-27.

3. Fold along the dotted line.

3-26

Here’s what the finished
press-the-flap switch
looks like! Press the
boot to close the switch.

B

3-27Add a Switch!

Press-the-flap

What glows when we press on the boot? Make it below!

B

+ -

3-28
Wind Sensor

What glows when we blow on the flower? Craft the flower by following
the instructions on page 3-29!

A

+

-

3-29Add a Switch!

Make a Wind Sensor

1. Cut out the flower, using the
red outline on the back side of
this page.

2. Add copper tape over the
overlapping gray lines on the
back side of the flower.

4. Tape the flap marked A
over the footprint marked A
on page 3-28.

3. Fold along the dotted line.

3-30

Here’s what the finished
wind sensor looks like!
Blow on the flower to
activate the switch. Try
adjusting the position
of the flower slightly
to improve the contact
between the copper
tape on the flower and
the paper.
You can also press on
the flower to operate
the switch as well!

A

3-31Add a Switch!

Make a Pocket Character Switch

1. Cut out the cat and the pocket,
using the red outline on the back
side of this page.

2. Roll up the paper along the
dotted lines at the bottom of
the cat cutout. This makes the
paper thicker so it presses more
securely against the switch,
making a stronger connection.

4. Tape the pocket over the
footprint marked D, by taping the
left, right and bottom sides. Be
sure to leave the top open. Now
the pocket is ready to hold the
cat!

3. Add copper tape to the gray
line, then build the circuit on
page 3-33.

3-32

Here’s what the finished
pocket character switch
looks like. When we put
the cat in the pocket, it will
close the circuit, turning
the switch on. Make sure
to push the cat all the way
into the pocket for a secure
connection.

We can turn off the switch
by pulling the cat out of the
pocket, or by flipping the cat
around so that the copper
tape doesn’t touch the
circuit.

3-33Add a Switch!

Pocket Character Switch

D

+ -

3-34

Your Switch!

3-35Add a Switch!

Well done! Now that we’ve crafted a bunch of switches, try drawing your
own switch from scratch. Remember: it’s all about making and breaking
connections in the circuit!

Design your own Switch!

3-36

Down the rabbit hole:
input - Process - output

So we’ve played a bunch with switches now, and even designed our
own! But how does the Chibi Chip actually know when to turn things
on and off with the switch?

It works by taking in information from the world through the input
pin. The pin is named “input” because information goes “in” to the
board. What information, you ask? Voltage!

3-37Add a Switch!

Just as we take in information about hot or cold through our fingers, a
Chibi Chip takes in information about voltage through its pins.
When nothing is connected to the input pin, a special circuit inside the
Chibi Chip gently “rests” the pin at a value of 0 volts, so it reads 0. The
indicator light above the input pin matches this reading and is thus off
when nothing is touching the pin.

When we connect the input pin to +3V by pressing the switch, the pin can
sense that the voltage has gone up. The voltage on the pin becomes 3V,
so it reads 1, and the indicator light turns on.

3-38

The code in the microcontroller processes the information from reading
the input voltage to make choices and compute the proper output. We save
the voltage reading in our pressed variable, process it through the if()
statement, and then turn on or off the LED.

Fingers are like input
pins: they sense things
through touch.

Our brain is like
the Chibi Chip’s
microcontroller: it
processes input and
makes decisions on
what to do based on
the input signal.

Our arms and legs
are like output pins:
they can change the
world around us.

It’s a bit like how our hands work with our brain to sense the world
around us and to do stuff in response:

Input

Process

Output

Sense Act

Think

3-39Add a Switch!

“We’ve learned so much
about coding!” said Fern.
“Here are some of the things
we learned!”

Output Commands:

Input Commands:

Control Flow:

Code Structure:
Code inside {} runs once at the
beginning, when the Chibi Chip is first
turned on.

Code inside {} runs over and over
again after setup.

void setup() { }

void loop() { }

on(pin number); Turn ON pin number by connecting it
to + 3V.

off(pin number); Turn OFF pin number by connecting it
to GND.

outputMode(pin number); Turns a pin into an output, which can
turn things like LEDs on and off.

read(pin number); Reads the voltage connected to
pin number, and reports it as a 0 or a
1: if the voltage is closer to GND, the
reading is 0. If the voltage is closer to
+3V, the reading is 1.

inputMode(pin number); Turns pin number into an input, which
can then read sensors and switches.

Makes the code pause for the amount
of milliseconds (there are 1000
milliseconds in a second).

If the condition is true, run option 1.
Otherwise, run option 2.

pause(milliseconds);

if(condition) {
 // option 1
} else {
 // option 2
}

3-40

“What else can we do with these lights?” asked Fern.
Everyone sat down and thought for a moment.
“Instead of going directly from off to on, could we make them
transition gradually?” Carmen asked.

“You mean like fading them in and out?” said Edith.
“Yeah!” exclaimed Fern. “That would make a really pretty effect
that can go with all kinds of scenes.”
“I feel like we could figure out how to do that!” Sami said.
“Shall we try?”

4-1Fade in and Out!

Chapter 4:
Fade in and Out!

“We’ve figured out how to turn the lights on and off, but how can we
make them fade slowly?” asked Fern the frog.

“I think I can explain!” said Sami the seal as she danced around the
room. “And while we’re figuring it out, we can make dance costumes.
We can have a parade later, and if we decorate our costumes with twin-
kling lights we will look even more fabulous!”

4-2

Set Brightness Levels
Rather than turning LEDs fully on or fully off, we can also dim them to inter-
mediate brightness levels! This lets us make fun new lighting effects, such
as fading our lights in and out smoothly, or creating a twinkling effect!

You will need:

USB PowerInternet connection

Upload the Set Level example code to the Chibi Chip. Go to Examples >
Love to Code Vol 1 > Set Level. When the code is done uploading, the light
on pin 0 will turn on and off by stepping through different brightness levels!

Upload not working? Try these debugging tips. If these don’t
help, check out the debugging section in the back of the book!

Chibi Chip,
mounted in a Clip

Programming
and power cable

A device with a web
browser (phone,
computer, or tablet):
this is the programming
device

Make sure the
volume is all the
way up.

Did the upload sound
waveform animation
appear? If not, try
refreshing the page and
clicking upload again.

Did the PROG light turn
steady red before
programming? If not,
press and hold the PROG
button until it turns red
and try uploading again.

4-3Fade in and Out!

Decode the code
Let’s take a look at the Set Level example code to see what’s going
on with our LED!

// Love to Code
// Volume 1: Set Level

int LED = 0; // initialize LED as pin 0

void setup() {
 outputMode(LED); // set LED pin as output
}

// Use repeated setLevel(pin, percent) statements
// to increase brightness level to 100 (fully on)
// and then back down to 0 (fully off)
void loop(){
 setLevel(LED, 25);
 pause(500);
 setLevel(LED, 50);
 pause(500);
 setLevel(LED, 75);
 pause(500);
 setLevel(LED, 100);
 pause(500);
 setLevel(LED, 75);
 pause(500);
 setLevel(LED, 50);
 pause(500);
 setLevel(LED, 25);
 pause(500);
 setLevel(LED, 0);
 pause(500);
}

4-4

setLevel(pin, level) sets the brightness level of a pin. It’s like
using a dimmer instead of an on/off switch to turn on a lamp. Instead
of all the way on or all the way off, it lets us set in-between brightness
levels. Here’s how it works:

setLevel(0, 25);

This tells the Chibi
Chip which pin we are
setting.

This is the brightness level
we want. It can be any whole
number, from 0 for all the way
off, to 100 for all the way on.

In our example code, we first used setLevel(LED, 25) to set the LED
pin, or pin 0, to 25% brightness. We then set pin 0 to varying brightness
levels, anywhere from 0 for all the way off to 100 for full brightness, in
increments of 25.

0 25 50 75 100

brightness

4-5Fade in and Out!

Play with code
Play with our example code by setting pin 0 to different brightness
levels to create your own patterns.

After programming a new pattern, clip the Chibi Chip to a previous
circuit, like the one on page 2-19, and see how it changes the scene!

That’s the great thing about programming. Even with the same
circuit and the same scene, we can tell different stories just by
changing the code!

4-6

Rather than suddenly switching between brightness levels, how do we get
the lights to transition even more smoothly? We want our lights to glide up
and down like a ramp, instead of stepping up and down like a staircase.

Right now, the brightness increments are big, at 25% per step. Perhaps
things would smooth out if we could make the increments smaller?

The smallest brightness increment is 1. So to fade more smoothly from
off (0) to full brightness (100), we could write setLevel(LED, 0), then
setLevel(LED, 1), setLevel(LED, 2), setLevel(LED, 3), and so on
all the way to setLevel(LED, 100).

But that would take so many lines of code, and take forever to write!

Decode the code

4-7Fade in and Out!

Luckily, there is a neat code structure called a loop to save us! To try
out a looping style knows as the while() loop, go to the code editor
and load the example found at Examples > Love to Code Vol 1 >
Fade with While Loop.

void loop() {
 int brightness = 0;

 while(brightness < 100) {
 setLevel(LED, brightness);
 pause(10);
 brightness = brightness + 1;
 }

 while(brightness > 0) {
 setLevel(LED, brightness);
 pause(10);
 brightness = brightness - 1;
 }
}

Once we’ve loaded this code into the Chibi Chip, the LED over pin 0
should be gently fading in and out. Here’s our new code, starting with
the loop():

Create a variable called
brightness to store our
current brightness level.

Fade in the LED
Set the LED to the current
brightness, increase the
brightness level by 1 and
then repeat this loop until the
brightness is 100, or fully on.

Fade out the LED
Set the LED to the current
brightness, decrease the
brightness level by 1 and
then repeat this loop until the
brightness is 0, or fully off.

Whew! It would’ve taken us about 400 lines of code to write this
program with only setLevel() and pause() statements, but we were
able to write it in only 11 lines with the help of the while() loop!

4-8

The while() loop lets us repeatedly run a snippet of code without
having to write it over and over. Any code inside the while() loop
runs only if the condition is TRUE:

 while(condition) {
 // Code here runs over and over
 // while condition is TRUE
 Update current condition;
 }

First the program checks if the condition is true. If so, it will run the
code inside the while() loop. When it’s done running the inner code,
it goes back to the top and checks again to see if the condition is still
true. If so, it goes back and runs the while() loop code again. This
loop repeats until the condition is no longer found to be TRUE.

To make sure we don’t get stuck forever inside the while() loop, we
must update our current condition somewhere in the while() loop’s
inner code so that at some point in time, the condition statement will
no longer hold true. If we forget to do this, the Chibi Chip gets stuck
inside the while() loop, which is called an infinite loop.

4-9Fade in and Out!

So to gradually fade our light from off to on, we set the brightness
using a while() loop like this:

int brightness = 0;

 while(brightness < 100) {

 setLevel(LED, brightness);
 pause(10);

 brightness = brightness + 1;
 }

Set brightness = 0
so that the light is off
at the beginning.

Check if the current brightness
is less than 100 (that is, if the light
is not fully on). If so, run the code
inside this loop!

Increase brightness by
1 so that the next time
the loop runs, it will be
just a little brighter.

Set the LED pin
to our current
brightness and wait
10 milliseconds before
continuing, otherwise
the brightness
changes too fast for us
to see!

...then our code goes back to the
start of the loop and checks if the
brightness is still less than 100.

This keeps going until our brightness reaches 100. At this point,
the light is fully on and the code will stop running our while()
loop and move on to the next line of code following the loop. Fading
to darkness works the same way, except now the brightness level
starts at 100 and decreases by 1 each time the loop repeats until the
brightness level becomes 0 again!

4-10

Putting it all together, here’s what a map of our example code looks
like for fading in and fading out using two back-to-back while() loops!

4-11Fade in and Out!

Play with code
Try playing around with the while() loop code to create your own fading
light effects!

Can you make the lights fade
faster? Now how about slower?
Just like with the Blink
example code, we can change
the pause() time to make the
fade effect go faster or slower.

We can also try changing the
brightness increment. For example,
changing the increment from
brightness = brightness + 1 to
brightness = brightness + 5 will
make the LED fade faster. However,
if the increment becomes too big, the
fade goes from a smooth ramp back
to choppy steps!

The light doesn’t have to fade all the way on or off! We can fade to a
medium brightnesses by changing the condition statement in the while()
loop. For example while(brightness < 50) will fade the light until it is
only halfway on!

Try it out! Can you make a candle-like flickering effect?

4-12

Now that we have one pin doing fun fade effects, how do we get
multiple pins to fade in different patterns? The easiest way is through
multithreading! Multithreading means running multiple pieces of
code at the same time. Each running bit of code is called a thread.

Decode the code

#include “ChibiOS.h”
#include “SimpleThreads.h”

//// thread 0
void setup0() {
 // thread 0’s setup code here
 outputMode(0);
}
void loop0() {
 // thread 0’s loop code here
 on(0);
 pause(300);
 off(0);
 pause(300);
}

Try loading Examples > Love to Code Vol 1 > Basic Multithreading
onto a Chibi Chip to see multithreading in action! We’ll see each of the
six indicator lights above the pins flashing different effects. Here’s the
code:

we have to include these two
special lines of code at the
beginning to use
multithreading

Thread
0:

Blink pin 0

4-13Fade in and Out!

//// thread 1
void setup1() {
 outputMode(1);
}
void loop1() {
 on(1);
 pause(500);
 off(1);
 pause(500);
}

//// thread 2
void setup2() {
 outputMode(2);
}
void loop2() {
 on(2);
 pause(800);
 off(2);
 pause(800);
}

//// thread 3
void setup3() {
 outputMode(3);
}
void loop3() {
 on(3);
 pause(1000);
 off(3);
 pause(1000);
}

Thread
1:

Blink pin 1

Thread
2:

Blink pin 2

Thread
3:

Blink pin 3

The code is longer, because we’ve crammed six programs into one,
so it keeps going:

4-14

//// thread 4
int led4 = 4;
void setup4() {
 outputMode(4);
}
void loop4() {
 int brightness4 = 0;
 while(brightness4 < 100) {
 setLevel(led4, brightness4);
 pause(10);
 brightness4 = brightness4 + 1;
 }
 while(brightness4 > 0) {
 setLevel(led4, brightness4);
 pause(10);
 brightness4 = brightness4 - 1;
 }
}

//// thread 5
int led5 = 5;
void setup5() {
 outputMode(5);
}
void loop5() {
 int brightness5 = 100;
 while(brightness5 > 0) {
 setLevel(led5, brightness5);
 pause(10);
 brightness5 = brightness5 - 1;
 }
 while(brightness5 < 100) {
 setLevel(led5, brightness5);
 pause(10);
 brightness5 = brightness5 + 1;
 }
}

Thread
4:

Fade pin 4

Thread
5:

Fade pin 5

4-15Fade in and Out!

Whew, that’s all six threads! Each thread is made up of an individually
numbered setup() as well as an individually numbered loop()
function. It’s like having six trains running at the same time on six
different tracks!

4-16

Likewise, we should also make sure the names of variables are different
between threads, so the Chibi Chip doesn’t get confused. It’s like having
two people with the same name share a mailbox — they’d have no way of
knowing which message was meant for which recipient!

That’s why we’ve named all the variables with their respective thread
number. We could name variables whatever we want, but naming them
something different for each thread keeps things simple to understand and
thread-safe.

Multithreading is easy, as long as we’re careful to keep each thread’s
resources separate!

Just as real trains could collide if we put them on the same track at the
same time, a Chibi Chip could get confused if two threads fight over a
common resource. For example, if loop0() and loop1() both try to control
pin 0, the result would be a confusing mix of commands from loop0() and
loop1(). This kind of collision is called a race condition. In order to keep
things thread-safe, which means preventing collisions, we just have to make
sure that different threads don’t ever try to control the same pin.

4-17Fade in and Out!

Play with code
Ready to play with some multithreading? Let’s go! Try changing the blink
and fade patterns inside each thread.

Remember, in order for our multithreading code to work, we need to
include these two special lines at the beginning of your code:

We also need to make sure that all six setup0() through setup5() and
loop0() through loop5() functions are in the code, or else it will not run.
If you don’t want to use a particular thread, just make the setup and loop
functions of that thread empty, like this:

#include “ChibiOS.h”
#include “SimpleThreads.h”

void setup0() {
}
void loop0() {
}

Finally, if you want to control more than one pin in one thread, that’s okay.
Just make sure you’re not trying to control the same pin in another thread
too, or else there might be a collision!

4-18

Make A Scene
You’ve learned so much! Now use your coding chops to help Fern
and friends design some light-up outfits for the parade.

You can make a scene bigger by using conductive fabric patches to
connect between two pages. Try it now!

First, remove pages 4-19 through 4-22 from the binder. Craft your
circuits on this page, 4-18, and on page 4-23, using conductive fabric
patches to bridge between the pages.

Once finished, lay page 4-20 over page 4-18, and page 4-21 over
page 4-23. The lights will shine through the parade!

4-19Fade in and Out!

4-20

4-21Fade in and Out!

4-22

4-23Fade in and Out!

Make A Scene - continued

Continue your circuit here! Use conductive fabric patches to extend
the circuit from page 4-18 on to this page, and then lay the middle
pages on top to complete the scene.

4-24

Down the rabbit hole:
Pulse Width Modulation

So how does a Chibi Chip fade lights in and out? It may seem like
the Chip is changing the voltage going to the LED to make it brighter
or dimmer, as previously explained in Chapter 1, but it’s actually
turning the light on and off very quickly in a process called
pulse width modulation (PWM).

The Chibi Chip can only turn a pin fully on or fully off, so it cannot
dim a LED by creating different voltages. Instead, to make the light
look like it’s partially on, the Chibi Chip blinks the light very quickly,
around 400 times a second: so fast that we can’t even notice it
turning on and off!

Instead, our eyes blur the rapid blinking so it seems like the LED is
shining at a constant, but dimmer, light level.

4-25Fade in and Out!

Each blink is called a pulse. How dark the light fades depends on how
much of the time the light spends in the on state versus the off state.
This ratio is called the duty cycle, and it is expressed in terms of a
percentage. So, when we call setLevel(), the brightness argument
is actually specifying the duty cycle of the PWM.

dimmer
25% of time on

medium
50% of time on

brighter
75% of time on

There’s a trick you can try to see the blinking for yourself. First,
program a LED to fade and then wave it very quickly in front of your
eyes. Instead of seeing a continuous streak of light, you will see a
“dotted line” of light. This is the light turning on and off very rapidly!
Next, fix the light to on, by programming it using on() and try waving
it around again. This time, you’ll see a continuous, solid streak!

LED fading with PWM LED on

4-26

“This is really cool!” exclaimed Fern.

“It’s not that cool,” muttered a smug, sarcastic voice. It was George
the flower. “There are way cooler switches you can make using a light
sensor. Haven’t you heard of one before?”

Carmen and Edith both rolled their eyes. “This guy,” whispered Sami.

Fern thought for a minute. Maybe George could teach her something
new she didn’t already know. “Hey George,” she said, “can you show
us?”

George heaved a sigh. “I guess. If you can keep up.”

“I’m pretty sure we can,” said Fern with a smile.

You’re amazing! You’ve finished Love to Code Volume 1. For new
adventures with Fern and friends, like how to use a light sensor,
check out chibitronics.com/lovetocode.

D-1Debugging

Debugging

Stuff isn’t working? No matter! That’s what debugging is for! Debugging
means looking closely at our project, finding the problems — also known
as bugs — and then fixing them so that our project works as expected.

Welcome to my world!
Don’t worry when things
don’t work the first time.
Figuring out what went
wrong is how discoveries
are made!

D-2

Breaking It Down
When a project doesn’t work, it can seem overwhelming. The problem could
be anywhere!

That’s why we break it down into smaller parts and look at them one by one.
Then it’s not so scary anymore! It’s just like how we take small bites when
we eat, rather than swallowing the whole meal all at once!

D-3Debugging

Here are some of the smaller pieces we can break our Love to Code project
into:

Power:
Is the Chibi Chip
getting enough
electricity to turn on
and run our circuit?

Circuit:
Is everything in our
circuit connected
properly?

Upload:
Are we able to send
code from our pro-
gramming device to
the Chibi Chip?

Code:
Are there errors in
our code? Does our
code actually say
what we mean?

D-4

Let’s start by checking the power! If
everything is working properly, the
power (PWR) light on the Chibi Chip
will be green to show that it has
enough power.

Power

1. Is the PWR light off? If so, it means the Chibi Chip is off because it isn’t
getting enough power! Try plugging the Chibi Chip into a power supply
that you’ve recently used to charge a phone, like a USB wall plug or com-
puter’s USB port. Phones take a lot of power to charge, so if the USB port
can charge a phone, it can power a Chibi Chip!

2. Is the PWR light red instead of green? That typically means we have a
short circuit connecting +3V and GND directly to each other, draining pow-
er from the Chibi Chip! If you’re powering the Chibi Chip from a computer,
an error message may also pop up on your screen about too much power
or current being drawn.

If this happens, unplug the Chibi Chip from the power source, find the
connection causing the short circuit, and remove it. To learn more about
short circuits, go to page 1-8.

PWR light

D-5Debugging

3c. Is the red “low battery” light on or flashing? Is the green light flash-
ing on and off? This usually means the batteries are running really low.
The Chibi Book is trying to find the power to run your circuit, but exhausting
itself and shutting down, only to try again after a short rest. Try placing
fresh batteries into the Chibi Book’s battery pack. The Chibi Book works
best with alkaline or NiMH rechargeable batteries!

3a. Is the battery pack switched on? Make sure the switch at the top of the
battery pack is flipped to the left, and that the green light is on.

3b. Are the batteries inserted properly? There should be three AA batter-
ies placed in the battery pack like this with the + side (nub side) facing left:

If you’re using a Chibi Book for power, it’s worth checking to see if the bat-
tery pack is working properly. Is the battery pack’s green power light on? If
not, here are a few things to check:

Once we know power is getting to the Chibi Chip,
we can check the rest of our circuit for other
problems!

Green if on

D-6

Is the Chibi Chip powered on, but the LEDs are still not turning on as
expected? There might be a bug in the connections of our circuit! Maybe
the circuit is incomplete because we forgot to make a connection, or the
connection is faulty. Or maybe something is connected that should not be,
causing a short circuit.

Circuit

1. Are your Chibi Light LEDs installed in the correct direction? Make sure
that the pointy (-) end of every LED is connected to GND, and the wide (+)
side of every LED is connected to a numbered pin or +3V. Otherwise, the
LED is installed backwards, and it won’t turn on.

2. Are any LEDs causing a short circuit? Make sure that the shiny metal
pads of your LEDs are touching only one strip of copper tape. If one pad of
an LED is touching two different copper wires, then there is a short circuit
and your light will not turn on. In the example below on the right, the wide
(+) side is accidentally touching both GND and +3V, causing a short circuit!

Let’s take a look at some common
Circuit bugs!

Yay! Nope.

Yay! Nope.

D-7Debugging

4. Are all the LEDs stuck down firmly? The conductive adhesive used on
circuit stickers require a good press to make a solid connection. So, try
pressing down on the metal pads of your LEDs to make the connection
stronger. If an LED turns on when pressed, and off after letting go, that
means there’s a weak connection between the copper tape and the LED’s
metal pads.

If you have more than one LED connected in parallel, and only some of them
are on, the most likely issue is a weak connection on the LEDs that aren’t
turning on. You can fix these weak connections by taping conductive fabric
patches between the LED’s metal pads and the underlying copper tape.

3. Is there enough overlap between the pads of your LED and the copper
tape? There needs to be plenty of overlap between the metal pad of your
LED and the copper tape for there to be a strong electrical connection. If
the overlapping area is too small, then power can not flow to the LED.

Yay! Nope.

Yay! Nope.

5. If you’ve tried everything and an LED is still not turning on, try switch-
ing it out for a new LED. LEDs can break if they are creased, or if they are
exposed to water, dirt, or grease.

D-8

6. Is the Chibi Chip aligned properly with the circuit? Make sure the shiny
metal pads on your Chibi Chip line up with and touch the copper tape of
your circuit.

Yay! Nope.

Circuit (Cont’d)

7. Is the copper tape really bumpy or wrinkly? If so, sometimes bumps
and wrinkles can prevent solid connections to your LEDs or Chibi Chip. If
this is the case, try smoothing out the tape by rolling over it with the flat
side of a pen or pencil.

8. Is the copper tape or LED sticker not sticky anymore? Make sure your
hands are clean and dry before working with the copper tape and stickers.
If the stickers or tape get dirty, they may lose their tack, causing weak
connections in the circuit. If this happens, try patching weak connections
with conductive fabric patches.

Yay! Nope.

D-9Debugging

9. Is there a tear in the copper tape? If so, the tear breaks the circuit’s
connection. Fix tears and restore the connection by taping over both sides
of a tear with a single conductive fabric patch.

10. Is your circuit connected at turns and corners? Copper tape often
tears at turns, and it is not enough to stick two pieces of copper tape on
top of each other. When making a corner using two pieces of copper tape,
reinforce the connection using a conductive fabric patch after sticking
down the second piece of copper tape.

Yay! Nope.

Make reliable turns with a single piece of copper tape and save on con-
ductive fabric patches using this origami trick:

1. Fold tape back,
so the sticky side
faces up.

2. Flip and turn
the tape at the
same time.

3. Flatten the
corner, and
you’re done!

D-10

Circuit (Cont’d)
11. Are there branches in your circuit, or do you need to extend your cop-
per tape with another piece? Make sure to use a conductive fabric patch to
connect multiple pieces of copper tape. Just sticking two pieces of copper
tape on top of each other will not create a strong or reliable electrical con-
nection. Even if the circuit seems to works at first, over time the connection
will break down.

12. Do you have a moving hinge in your circuit? Make sure to reinforce
it with a conductive fabric patch. Tears are especially common at plac-
es where the copper tape gets folded repeatedly. Copper tape will crack
when folded too many times.

Yay! Nope.

Fabric patches Won’t develop cracks even with
repeated folding, so they’re great for reinforcing
moving or bending parts of a circuit!

D-11Debugging

13. Is a switch not responding when pressed? If so, make sure that the
copper tape on the switch actually lines up with the gap in the circuit. If
it’s not aligned, the copper tape won’t close the circuit when the switch is
pressed, and the switch will not work.

14. Is the switch sometimes working and sometimes not when pressed?
That means the switch connection is unreliable. Check that the copper
tape is smooth and clean on both halves of the switch. Then, try ways to
increase the pressure between the pieces of copper tape in your switch.

For example, in the pocket character switch (page 3-31), if you use a
thicker paper, this will make the switch stiffer and more springy. This ap-
plies more pressure to the connection, helping to make your switch more
reliable.

Make the copper tape patch large and the circuit gap small. This makes
it easier for your switch to close the circuit. This is especially import-
ant for more advanced switches, such as the wind sensing switch (page
3-28), where the switch isn’t actually pressed by hand.

Nope.

Yay!

D-12

Upload
Even if the circuit is done, the Chibi Chip needs to be programmed correctly
for our project to work. Sometimes there are problems when we try to send
code from our programming device to the Chibi Chip. Here’s how to check if
this is an issue!

1. Is the volume turned up all the way up? Is the sound acccidentally
muted? Make sure to unmute your sound and turn the volume all the way
up so that the Chibi Chip can hear the code. One of the most common
upload problems is that the audio is simply too quiet!

We test the upload process by trying to upload the Blink example program.
Save any code you’ve written and open up the blink example code by se-
lecting Examples > Love to Code Vol 1 > Basic Blink. We start with this
known code because it’s easy to tell if it’s working properly. If the upload is
successful, we will see pin 0 blink!

If the Basic Blink didn’t upload, let’s check out some possible reasons why:

D-13Debugging

3. Can your browser play web audio? Try unplugging the audio cable
from your programming device for a moment, turning the volume up to its
maximum level, and clicking upload. When the sound banner appears, you
should hear a staticky sound. This staticky sound is the code that the Chibi
Chip is listening for.

2. Is the code being converted into sound? Click the “Upload” button.
Within a few seconds, this orange “sound banner” should appear at the
bottom of the screen:

If you can’t hear the code playing, try testing to see if your browser is
compatible with the Love to Code system. To run the test, visit
ltc.chibitronics.com/test and click on the “Test Audio” button. If you
hear a short tune play, that means your browser is compatible. If not, try
switching to an up-to-date version of Chrome, Firefox or Edge.

If the sound banner does not appear, the code is not being translated into
sound. If this happens, try refreshing the browser. Then, re-open the blink
example code, and click “Upload” again.

D-14

6. Is the Chibi Chip in program mode? Before clicking upload, make sure
to press and hold the programming (PROG) button on the Chibi Chip until
the PROG LED blinks and stays red. Otherwise the Chibi Chip won’t know
to listen for new code.

5. Do you hear a static sound while programming the Chibi Chip? That
means your audio cable isn’t plugged all the way in. Make sure to push the
audio cable all the way into your programming device, so that the Chibi
Chip is hearing the code, and not you!

Upload (Cont’d)
4. Is the audio being distorted? Some laptops automatically apply audio
“enhancements” (such as Dolby Audio or bass boost). These enhance-
ments will distort sound in a way that the Chibi Chip may not be able to
understand. If you have a Windows computer, particularly those made by
Lenovo, try following these instructions to disable pre-loaded audio distor-
tions:

1. Right-click
“Dolby” icon

2. Select “Turn off Dolby
Audio” (you can turn it
on again using the same
menu item)

1. Press hard & hold!

2. PROG light solid red! Let go of the button now.

D-15Debugging

7. Is the Chibi Chip hearing the audio code? During upload, the red PROG
light on the Chibi Chip should blink to show that it hears the code. If the
PROG light stays solid red, even though the sound should be playing, it
means the audio is not making it to your Chibi Chip. If this is the case, try
turning up the volume on your device and check that sounds are playing
(Step 3).

8. Does the PROG light turn green? If so, that means the upload is suc-
cessful. If your project still isn’t behaving as expected, try checking the
circuit or the code!

If the PROG light just blinks red, but never turns green that means your
Chibi Chip heard some of the sounds, but was not able to hear the entire
program. Check again that your volume is turned all the way up (Step
1), and check for hidden add-ons or plug-ins that could be distorting the
audio (Step 4). Furthermore, if another kind of device works, this means
there is likely some kind of distortion in your programming device’s audio
path.

8. Still stumped? Send us a note at help@chibitronics.com and we’ll try
our best to debug with you!

D-16

Code
Sometimes there will be errors in our code that makes our circuits do
something other than what we intended. In this case, we have to debug our
code!

Clicked “Upload” on the browser, but the sound bar doesn’t appear?
There may be formatting errors in your code. If you’re able to upload the
blink example code but not your own code, this is likely the case.

Debugging code can often be a long and
frustrating process, but rest assured, it’s
really satisfying when you finally figure out
what’s wrong and get your projects working!

The code editor needs your code to be written in exactly the right format,
otherwise it wont understand the code and cannot compile it. Compiling
means translating the text code in your browser into the code song that
a Chibi Chip can understand.

As a result, little errors in how the code is written, called syntax errors,
will stop an entire program from uploading!

D-17Debugging

 Can you spot all the errors in the code above? How would you fix them?

Here are some common errors to check for:

Luckily, for common syntax errors like these, the editor will add a small
red circle next to, or just after, the code lines with problems. If you hover
over these circles with your mouse, the editor will pop up additional
information about the error. This way it’s easier to find the mistakes and
fix them!

1. Missing a semicolon ; at the end of each line of code
2. Forgetting the closing parenthesis) in a function call
3. Forgetting the closing curly brace } of a loop or if statement
4. Misspelling a variable or function name
5. Mismatching the capitalization of variable or function names
6. Creating multiple variables with the same name

D-18

Code (CONT’D)
Code uploaded properly, but not behaving as intended? That means that
the code is formatted correctly, so it compiled and uploaded, but there is an
error in what the code tells the circuit to do, causing the program to behave
in an unintended way. This type of error is called a logic error.

Logic errors can be challenging to spot and fix because we have to figure
out our error based on the unexpected behavior of our circuit.

D-19Debugging

3. Are the LEDs blinking on and off, but not very brightly? It may be be-
cause the LED pin is still in input mode, which is the default mode. If this
is the case, the LED will still blink, but the pin will not be able to turn an
LED fully on. Make sure to set every pin meant to turn on an LED to be an
output using outputMode(pin number); in the setup code.

Some logic errors can be quick to spot. Here are a few examples of com-
mon logic errors:

1. Are there enough delays? If there are not enough delays in your pro-
gram, or if the delays are not long enough, the logic might be running as
intended, but the effects are happening too quickly for us to see.

2. Do the pins in the code match the pins in the circuit? It’s easy to forget
which pin was used when crafting a circuit. For example, when adding a
switch, make sure to update the pin number in the example code to match
the pin number you’ve wired the switch to!

D-20

2. Test one change at a time. If you make several changes at once, you
may not know which change actually fixes the problem. Also, sometimes
changes can introduce new bugs, so even if one change fixed the bug,
the other change could have broken it again!

Most logic errors are hard to spot. But don’t worry: finding bugs and fixing
them is all part of learning to code! Here are some tips for finding the
trickier bugs:

Code (cont’d)

1. Pretend to be the Chibi Chip, and trace through the code line by line.
Tracing through a program slowly can help catch many bugs. For exam-
ple: “turn light on”, “wait 1 second”, “turn light off”, “loop ends, repeat”,
“turn light on” - Aha, I was missing a delay after the “light off!”, so the
light turned off and on so quickly I couldn’t see it!

D-21Debugging

3. Reduce your code to the simplest possible version to isolate a bug.
Just as we broke our Love to Code projects into power, circuit, upload
and code portions to simplify debugging, we can break a program down
into smaller pieces of code so it’s easier to work with.

Once you figure out what’s going on with the simple code for one light,
you can refer to your original version and apply the fixes, testing each
change as you go.

For example, if you have a program that is blinking five lights, but one of
those lights is not working, save your program into a new file, and sim-
plify it so that it controls only the one light that’s having problems.

D-22

The whole process looks like this:

1) Start from the very beginning and insert the LED blink code to es-
tablish that uploading is working, and that the blink code works.
2) Move the blink code a few lines down and upload the code again.
3) If the blink code didn’t trigger, look before that point for clues on why
it didn’t get there.
4) If the blink code did trigger, move the blink code a little further down
in the program and upload again.
5) Repeat steps 2-4 until you’ve found all your bugs!

Code (cont’d)
A useful tool for finding and fixing bugs is to add a little extra code in your
program that helps monitor the Chibi Chip’s progress in running your code.
For example, we could insert a few lines of code that turn an LED on and off
at a specific point in a program.

If the LED blinks, that means the Chibi Chip is able to run up to that part of
the code. Likewise, if the LED doesn’t blink, it means that the code leading
up to the blink isn’t being run. This way, we can use the blinking LED as an
indicator for tracing through our code. If possible, try to use an LED that you
aren’t already using in your project! Below is a starting point for a blinkome-
ter that you might find handy:

// these five lines of code are a blinkometer you can insert
// in your program to see how far it has run!
 outputMode(4); // ensure pin 4 can drive an LED
 on(4); // blink pin 4 on and off
 pause(500);
 off(4);
 pause(500);

D-23Debugging

Finally, debugging a program is not something you have to do alone. Try
explaining the problem you are having out loud to someone else. Often
you will catch the issues even before you finish explaining. If not, the other
person may be able to offer suggestions or ask helpful questions. This
technique is effective even if the other person hasn’t coded before! In fact,
some progammers use a technique called “rubber duck debugging” where
they first try explaining their problems to a rubber duck.

Instead of simply saying “my code is not working” or “my code is broken!”,
break your story down into specific intentions and observations: “this is
what I expected my code to do, but it’s doing this instead.” This helps clar-
ify what you’re trying to debug, and will also make it easier for someone
else to help you.

D-24

Debugging is an important programming skill! Don’t worry if it takes you
a while to solve a problem, you are building useful skills in the process,
while growing to understand coding better!

Code (cont’d)

D-25Debugging

...And beyond
The debugging suggestions we shared in this chapter are only some of
the most common tips meant to help you get started with the debugging
process. For more debugging resources, check out our website at
chibitronics.com/lovetocode.

Don’t worry if it’s frustrating at first. Debugging is a skill that takes some
patience but you get better at it as you debug more projects. It can also
be fun to create (and debug) with a friend. Fresh eyes can catch things
that we don’t see ourselves, so reach out and ask others for help too!

Have more questions?
Drop us a note at
help@chibitronics.com

D-26

C-1Conclusion

Conclusion

“We’ve made so much stuff!” said Fern.
“You’re the one who did it all,” said Edith.
“We just helped,” said Carmen.
“Even though you thought you couldn’t,” whispered Sami.

Fern smiled.

C-2

Together we’ve learned how to:

Fade lights in and out gradually,
and make fun patterns with the
LEDs using multithreading

Turn on an LED light using
our Chibi Chip

Add multiple LEDs to a project
and make them all blink

Control our lights with various
kinds of crafted switches

Debug and fix our projects when
something doesn’t work!

C-3Conclusion

“This is just the tip of the iceberg,” said Sami. “We can do so
much more!”

Ready for more? Here’s a preview of other adventures waiting for you
to take with Fern and friends:

Check out:
chibitronics.com/lovetocode
for new chapters, new stickers, and more!

Control circuits using a light sensor!
Learn how to make projects that can
respond to light and dark.

Make projects even more vivid and interac-
tive using special LEDs that can be pro-
grammed to any color of the rainbow!

C-4

Join the party! Go to chibitronics.com/projects to see community projects
and to share your own!

Happy making and see you again soon!

C-5Conclusion

Acknowledgments

Thanks to the many people who inspired, advised, informed, reviewed and
otherwise helped make this book possible:

Sean “xobs” Cross, Natalie Freed, Pauline Ng, Leah Buechley, David Mellis,
Sari Widman, Amy Wibowo, Kristin Osiecki, Asli Demir, Colleen Graves,
Josh Burker, David Cole, Jeannine Huffman, Molly Adams, Jill Dawson,
Nicole Fuerst, Lou Buran, Rafranz Davis, Sylvia Martinez, Ricarose Roque,
Alicia Gibb, Joy Schultz, Christopher Sweeney, Susan Klimczak and the
Learn 2 Teach, Teach 2 Learn group at the South End Technology Center,
Ryan Jenkins and Nicole Catrett of Wonderful Idea Co, Paula Bontá and
Brian Silverman of the Playful Invention Company, Mitchel Resnick, Natalie
Rusk, Andrew Sliwinski, Eric Rosenbaum, Jennifer Jacobs and the rest of
the thoughtful and generous team in the Lifelong Kindergarten Group at
the MIT Media Lab ... and many more!

C-6

C-7Conclusion

C-8
9 789811 146886

