
D-1Debugging

Debugging

Stuff isn’t working? No matter! That’s what debugging is for! Debugging
means looking closely at our project, finding the problems — also known
as bugs — and then fixing them so that our project works as expected.

Welcome to my world!
Don’t worry when things
don’t work the first time.
Figuring out what went
wrong is how discoveries
are made!

D-2

Breaking It Down
When a project doesn’t work, it can seem overwhelming. The problem could
be anywhere!

That’s why we break it down into smaller parts and look at them one by one.
Then it’s not so scary anymore! It’s just like how we take small bites when
we eat, rather than swallowing the whole meal all at once!

D-3Debugging

Here are some of the smaller pieces we can break our Love to Code project
into:

Power:
Is the Chibi Chip
getting enough
electricity to turn on
and run our circuit?

Circuit:
Is everything in our
circuit connected
properly?

Upload:
Are we able to send
code from our pro-
gramming device to
the Chibi Chip?

Code:
Are there errors in
our code? Does our
code actually say
what we mean?

D-4

Let’s start by checking the power! If
everything is working properly, the
power (PWR) light on the Chibi Chip
will be green to show that it has
enough power.

Power

1. Is the PWR light off? If so, it means the Chibi Chip is off because it isn’t
getting enough power! Try plugging the Chibi Chip into a power supply
that you’ve recently used to charge a phone, like a USB wall plug or com-
puter’s USB port. Phones take a lot of power to charge, so if the USB port
can charge a phone, it can power a Chibi Chip!

2. Is the PWR light red instead of green? That typically means we have a
short circuit connecting +3V and GND directly to each other, draining pow-
er from the Chibi Chip! If you’re powering the Chibi Chip from a computer,
an error message may also pop up on your screen about too much power
or current being drawn.

If this happens, unplug the Chibi Chip from the power source, find the
connection causing the short circuit, and remove it. To learn more about
short circuits, go to page 1-8.

PWR light

D-5Debugging

3c. Is the red “low battery” light on or flashing? Is the green light flash-
ing on and off? This usually means the batteries are running really low.
The Chibi Book is trying to find the power to run your circuit, but exhausting
itself and shutting down, only to try again after a short rest. Try placing
fresh batteries into the Chibi Book’s battery pack. The Chibi Book works
best with alkaline or NiMH rechargeable batteries!

3a. Is the battery pack switched on? Make sure the switch at the top of the
battery pack is flipped to the left, and that the green light is on.

3b. Are the batteries inserted properly? There should be three AA batter-
ies placed in the battery pack like this with the + side (nub side) facing left:

If you’re using a Chibi Book for power, it’s worth checking to see if the bat-
tery pack is working properly. Is the battery pack’s green power light on? If
not, here are a few things to check:

Once we know power is getting to the Chibi Chip,
we can check the rest of our circuit for other
problems!

Green if on

D-6

Is the Chibi Chip powered on, but the LEDs are still not turning on as
expected? There might be a bug in the connections of our circuit! Maybe
the circuit is incomplete because we forgot to make a connection, or the
connection is faulty. Or maybe something is connected that should not be,
causing a short circuit.

Circuit

1. Are your Chibi Light LEDs installed in the correct direction? Make sure
that the pointy (-) end of every LED is connected to GND, and the wide (+)
side of every LED is connected to a numbered pin or +3V. Otherwise, the
LED is installed backwards, and it won’t turn on.

2. Are any LEDs causing a short circuit? Make sure that the shiny metal
pads of your LEDs are touching only one strip of copper tape. If one pad of
an LED is touching two different copper wires, then there is a short circuit
and your light will not turn on. In the example below on the right, the wide
(+) side is accidentally touching both GND and +3V, causing a short circuit!

Let’s take a look at some common
Circuit bugs!

Yay! Nope.

Yay! Nope.

D-7Debugging

4. Are all the LEDs stuck down firmly? The conductive adhesive used on
circuit stickers require a good press to make a solid connection. So, try
pressing down on the metal pads of your LEDs to make the connection
stronger. If an LED turns on when pressed, and off after letting go, that
means there’s a weak connection between the copper tape and the LED’s
metal pads.

If you have more than one LED connected in parallel, and only some of them
are on, the most likely issue is a weak connection on the LEDs that aren’t
turning on. ou can fix these weak connections by taping conductive fabric
patches between the LED’s metal pads and the underlying copper tape.

3. Is there enough overlap between the pads of your LED and the copper
tape? There needs to be plenty of overlap between the metal pad of your
LED and the copper tape for there to be a strong electrical connection. If
the overlapping area is too small, then power can not flow to the LED.

Yay! Nope.

Yay! Nope.

5. If you’ve tried everything and an LED is still not turning on, try switch-
ing it out for a new LED. LEDs can break if they are creased, or if they are
exposed to water, dirt, or grease.

D-8

6. Is the Chibi Chip aligned properly with the circuit? Make sure the shiny
metal pads on your Chibi Chip line up with and touch the copper tape of
your circuit.

Yay! Nope.

Circuit (Cont’d)

7. Is the copper tape really bumpy or wrinkly? If so, sometimes bumps
and wrinkles can prevent solid connections to your LEDs or Chibi Chip. If
this is the case, try smoothing out the tape by rolling over it with the flat
side of a pen or pencil.

8. Is the copper tape or LED sticker not sticky anymore? Make sure your
hands are clean and dry before working with the copper tape and stickers.
If the stickers or tape get dirty, they may lose their tack, causing weak
connections in the circuit. If this happens, try patching weak connections
with conductive fabric patches.

Yay! Nope.

D-9Debugging

9. Is there a tear in the copper tape? If so, the tear breaks the circuit’s
connection. Fix tears and restore the connection by taping over both sides
of a tear with a single conductive fabric patch.

10. Is your circuit connected at turns and corners? Copper tape often
tears at turns, and it is not enough to stick two pieces of copper tape on
top of each other. When making a corner using two pieces of copper tape,
reinforce the connection using a conductive fabric patch after sticking
down the second piece of copper tape.

Yay! Nope.

Make reliable turns with a single piece of copper tape and save on con-
ductive fabric patches using this origami trick:

1. Fold tape back,
so the sticky side
faces up.

2. Flip and turn
the tape at the
same time.

3. Flatten the
corner, and
you’re done!

D-10

Circuit (Cont’d)
11. Are there branches in your circuit, or do you need to extend your cop-
per tape with another piece? Make sure to use a conductive fabric patch to
connect multiple pieces of copper tape. Just sticking two pieces of copper
tape on top of each other will not create a strong or reliable electrical con-
nection. Even if the circuit seems to works at first, over time the connection
will break down.

12. Do you have a moving hinge in your circuit? Make sure to reinforce
it with a conductive fabric patch. Tears are especially common at plac-
es where the copper tape gets folded repeatedly. Copper tape will crack
when folded too many times.

Yay! Nope.

Fabric patches Won’t develop cracks even with
repeated folding, so they’re great for reinforcing
moving or bending parts of a circuit!

D-11Debugging

13. Is a switch not responding when pressed? If so, make sure that the
copper tape on the switch actually lines up with the gap in the circuit. If
it’s not aligned, the copper tape won’t close the circuit when the switch is
pressed, and the switch will not work.

14. Is the switch sometimes working and sometimes not when pressed?
That means the switch connection is unreliable. Check that the copper
tape is smooth and clean on both halves of the switch. Then, try ways to
increase the pressure between the pieces of copper tape in your switch.

For example, in the pocket character switch (page 3-31), if you use a
thicker paper, this will make the switch stiffer and more springy. This ap-
plies more pressure to the connection, helping to make your switch more
reliable.

Make the copper tape patch large and the circuit gap small. This makes
it easier for your switch to close the circuit. This is especially import-
ant for more advanced switches, such as the wind sensing switch (page
3-28), where the switch isn’t actually pressed by hand.

Nope.

Yay!

D-12

Upload
Even if the circuit is done, the Chibi Chip needs to be programmed correctly
for our project to work. Sometimes there are problems when we try to send
code from our programming device to the Chibi Chip. Here’s how to check if
this is an issue!

1. Is the volume turned up all the way up? Is the sound acccidentally
muted? Make sure to unmute your sound and turn the volume all the way
up so that the Chibi Chip can hear the code. One of the most common
upload problems is that the audio is simply too quiet!

We test the upload process by trying to upload the Blink example program.
Save any code you’ve written and open up the blink example code by select-
ing Examples > Blinky. We start with this known code because it’s easy
to tell if it’s working properly. If the upload is successful, we will see pin 0
blink!

If the basic blink didn’t upload, let’s check out some possible reasons why:

D-13Debugging

3. Can your browser play web audio? Try unplugging the audio cable
from your programming device for a moment, turning the volume up to its
maximum level, and clicking upload. When the sound banner appears, you
should hear a staticky sound. This staticky sound is the code that the Chibi
Chip is listening for.

2. Is the code being converted into sound? Click the “Upload” button.
Within a few seconds, this orange “sound banner” should appear at the
bottom of the screen:

If you can’t hear the code playing, try testing to see if your browser is
compatible with the Love to Code system. To run the test, visit
ltc.chibitronics.com/test and click on the “Test Audio” button. If you
hear a short tune play, that means your browser is compatible. If not, try
switching to an up-to-date version of Chrome, Firefox or Edge.

If the sound banner does not appear, the code is not being translated into
sound. If this happens, try refreshing the browser. Then, re-open the blink
example code, and click “Upload” again.

D-14

6. Is the Chibi Chip in program mode? Before clicking upload, make sure
to press and hold the programming (PROG) button on the Chibi Chip until
the PROG LED blinks and stays red. Otherwise the Chibi Chip won’t know
to listen for new code.

5. Do you hear a static sound while programming the Chibi Chip? That
means your audio cable isn’t plugged all the way in. Make sure to push the
audio cable all the way into your programming device, so that the Chibi
Chip is hearing the code, and not you!

Upload (Cont’d)
4. Is the audio being distorted? Some laptops automatically apply audio
“enhancements” (such as Dolby Audio or bass boost). These enhance-
ments will distort sound in a way that the Chibi Chip may not be able to
understand. If you have a Windows computer, particularly those made by
Lenovo, try following these instructions to disable pre-loaded audio distor-
tions:

1. Right-click
“Dolby” icon

2. Select “Turn off Dol-
by Audio” (you can turn
it on again using the
same menu item)

1. Press hard & hold!

2. PROG light solid red! Let go of the button now.

D-15Debugging

7. Is the Chibi Chip hearing the audio code? During upload, the red PROG
light on the Chibi Chip should blink to show that it hears the code. If the
PROG light stays solid red, even though the sound should be playing, it
means the audio is not making it to your Chibi Chip. If this is the case, try
turning up the volume on your device and check that sounds are playing
(Step 3).

8. Does the PROG light turn green? If so, that means the upload is suc-
cessful. If your project still isn’t behaving as expected, try checking the
circuit or the code!

If the PROG light just blinks red, but never turns green that means your
Chibi Chip heard some of the sounds, but was not able to hear the entire
program. Check again that your volume is turned all the way up (Step
1), and check for hidden add-ons or plug-ins that could be distorting the
audio (Step 4). Furthermore, if another kind of device works, this means
there is likely some kind of distortion in your programming device’s audio
path.

8. Still stumped? Send us a note at help@chibitronics.com and we’ll try
our best to debug with you!

D-16

Code
Sometimes there will be errors in our code that makes our circuits do
something other than what we intended. If so, we have to debug our code!

The MakeCode block programming editor helps us out by preventing
punctuation errors and many other “syntax” errors. However, we can still
run into issues where some of our code won’t be able to run as written.

Is some of your code grayed-out?
If some of your code is grayed out, it indicates that this code won’t run.
One example that you’ve seen before is when you have code that is not
snapped inside an enclosing block (such as a “forever,” “on start,” or
“when pressed”). Without an enclosing block, these blocks are like train
tracks that aren’t connected to the main track. The train won’t run on
them!

Debugging code can often be a long and
frustrating process, but rest assured, it’s
really satisfying when you finally figure out
what’s wrong and get your projects working!

f course, it’s fine to keep grayed-out blocks in the programming area if
you don’t want that part of the code to run; for instance if you want to test
something out without that code.

D-17Debugging

Another situation in which you might see grayed-out code is if you try to
use more than one “on start” block. You can use as many forever blocks
as you like, but only one “on start.” Otherwise, your program wouldn’t
know which one to start with!

One more place you might see grayed-out code is if you have more than
one of the same “when _” event block for the same pin. Double-check if
you meant to include a “when pressed” and a “when released,” or use a
different pin number for each.

Yay!Nope.

D-18

Code (CONT’D)
Code uploaded properly, but not behaving as intended? That means the
code is running, but it is not instructing the circuit to do what you had in
mind. This type of error is called a logic error.

Logic errors can be challenging to spot and fix because we have to figure
out our error based on the unexpected behavior of our circuit.

D-19Debugging

Some logic errors can be quick to spot. Here are a few examples of com-
mon logic errors:

1. Are there enough delays? If there are not enough delays in your pro-
gram, or if the delays are not long enough, the logic might be running as
intended, but the effects are happening too quickly for us to see.

2. Do the pins in the code match the pins in the circuit? It’s easy to forget
which pin was used when crafting a circuit. For example, when adding a
switch, make sure to update the pin number in the example code to match
the pin number you’ve wired the switch to!

D-20

2. Test one change at a time. If you make several changes at once, you
may not know which change actually fixes the problem. lso, sometimes
changes can introduce new bugs, so even if one change fixed the bug,
the other change could have broken it again!

ost logic errors are hard to spot. But don’t worry finding bugs and fixing
them is all part of learning to code! ere are some tips for finding the
trickier bugs:

Code (cont’d)

1. Pretend to be the Chibi Chip, and trace through the code line by line.
Tracing through a program slowly can help catch many bugs. For exam-
ple: “turn light on”, “pause 1 second”, “turn light off”, “loop ends, repeat”,
“turn light on” - Aha, I was missing a pause after the “light off!”, so the
light turned off and on so quickly I couldn’t see it!

D-21Debugging

3. Reduce your code to the simplest possible version to isolate a bug.
Just as we broke our Love to Code projects into power, circuit, upload
and code portions to simplify debugging, we can break a program down
into smaller pieces of code so it’s easier to work with.

nce you figure out what’s going on with the simple code for one light,
you can refer to your original version and apply the fixes, testing each
change as you go.

For example, if you have a program that is blinking five lights, but one
of those lights is not working, save your program into a new file or drag
away some of the code so that it is grayed-out. Then simplify the code so
that it controls only the single light that’s having problems.

D-22

The whole process looks like this:

1) Start from the very beginning and insert the LED blink code to es-
tablish that uploading is working, and that the blink code works.
2) Move the blink code a few lines down and upload the code again.
3) If the blink code didn’t trigger, look before that point for clues on why
it didn’t get there.
4) If the blink code did trigger, move the blink code a little further down
in the program and upload again.
5) Repeat steps 2-4 until you’ve found all your bugs!

Code (cont’d)
 useful tool for finding and fixing bugs is to add a little extra code in your

program that helps monitor the Chibi Chip’s progress in running your code.
For example, we could insert a bit of code that turns a LED on and off at a
specific point in a program.

If the LED blinks, that means the Chibi Chip is able to run up to that part of
the code. Likewise, if the LED doesn’t blink, it means that the code leading
up to the blink isn’t being run. This way, we can use the blinking LED as
an indicator for tracing through our code. If possible, try to use an LED
that you aren’t already using in your project! Below is a starting point for a
blinkometer that you might find handy

Insert this code
snippet into your full
program. It will blink
pin 4 when it reaches
that part of the code.

D-23Debugging

Finally, debugging a program is not something you have to do alone. Try
explaining the problem you are having out loud to someone else. Often
you will catch the issues even before you finish explaining. If not, the other
person may be able to offer suggestions or ask helpful questions. This
technique is effective even if the other person hasn’t coded before! In fact,
some progammers use a technique called “rubber duck debugging” where
they first try explaining their problems to a rubber duck.

Instead of simply saying “my code is not working” or “my code is broken!”,
break your story down into specific intentions and observations “this is
what I expected my code to do, but it’s doing this instead.” This helps clar-
ify what you’re trying to debug, and will also make it easier for someone
else to help you.

D-24

Debugging is an important programming skill! Don’t worry if it takes you
a while to solve a problem, you are building useful skills in the process,
while growing to understand coding better!

Code (cont’d)

D-25Debugging

...And beyond
The debugging suggestions we shared in this chapter are only some of
the most common tips meant to help you get started with the debugging
process. For more debugging resources, check out our website at
chibitronics.com/lovetocode.

Don’t worry if it’s frustrating at first. Debugging is a skill that takes some
patience but you get better at it as you debug more projects. It can also
be fun to create (and debug) with a friend. Fresh eyes can catch things
that we don’t see ourselves, so reach out and ask others for help too!

Have more questions?
Drop us a note at
help@chibitronics.com

